氧化數計算的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和整理懶人包

氧化數計算的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦JimBell寫的 哈伯寶藏:哈伯太空望遠鏡30年偉大探索與傳世影像 和郭東明的 脫硫工程技術與設備(第三版)都 可以從中找到所需的評價。

另外網站下面的化合物氧化數怎麼算??也說明:一般計算氧化數,是先指定某些優先原子的氧化數,然後再計算其他原子的氧化數指定的優先順序大約是:H(+1)、鹼金屬(+1)、O(-2).。

這兩本書分別來自大石國際文化 和化學工業所出版 。

明志科技大學 化學工程系碩士班 楊純誠、施正元所指導 林冠吟的 添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料 (2021),提出氧化數計算關鍵因素是什麼,來自於磷酸鋰鐵、溶膠凝膠法、多孔氧化石墨烯、氣相生長碳纖維、鋰離子擴散係數、電子導電度、原位X-ray繞射光譜儀、原位顯微拉曼光譜儀。

而第二篇論文國立臺北科技大學 環境工程與管理研究所 胡憲倫所指導 張晁綸的 半導體封裝產品環境衝擊與碳足跡評估-以某半導體公司為例 (2021),提出因為有 生命週期評估(LCA)、碳足跡評估、半導體、淨零排放的重點而找出了 氧化數計算的解答。

最後網站氧化還原反應 - 崑山電子歷程則補充:確切的說,發生氧化數變化的碳原子僅限於涉及變化了的基團的少數幾個碳原子,但為了計算方便,計算時可以取平均價態。 雙鍵和三鍵可以被氧化劑氧化而斷開 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了氧化數計算,大家也想知道這些:

哈伯寶藏:哈伯太空望遠鏡30年偉大探索與傳世影像

為了解決氧化數計算的問題,作者JimBell 這樣論述:

  太陽發出的光要八分半鐘才會抵達地球,因此我們看到的太陽是它八分半鐘之前的樣子。同理,往太空愈深處望去,看到的就是愈久以前的太空。哈伯太空望遠鏡能看見太空非常久以前的樣子,包括數百萬、甚至數十億年前的恆星、星雲和星系。      哈伯揭露的宇宙起源和演變歷程,遠超過其他太空望遠鏡。要是沒有哈伯,我們就不可能準確地知道大爆炸發生在將近138億年前,或者大質量黑洞在宇宙中很普遍,或者需要更多證據支持暗物質的存在。2020年4月,這架當代最重要的望遠鏡已經滿30歲,並進入可用年限的最後階段。哈伯先前已歷經五次太空維護任務,為本書撰寫序言的太空人約翰.格倫斯菲爾德參與了其中三次,今後

哈伯將不再接受實體維護,但在停止運作之後,哈伯的遺產仍會長久傳承下去。      本書作者吉姆.貝爾教授是使用哈伯望遠鏡的天文學家,也是頂尖太空攝影專家,他在這本精采的專書中細數哈伯的所有成就,我們會了解哈伯如何拓展人類對宇宙的認識,以及我們在宇宙中的位置。   本書特色     自1990年發射升空至今,哈伯太空望遠鏡捕捉到無以數計的壯麗影像,包括太陽系與系外行星、遙遠的衛星、大量的小行星、行蹤飄忽的彗星、爆炸的恆星、高聳的星雲,以及碰撞中的星系。不過,由於NASA已不再對哈伯望遠鏡進行實體維修,這架「時光機」很可能會在不久的未來停止運作,因此,使用哈伯進行觀測研究的天

文學家、也是頂尖太空攝影專家吉姆.貝爾教授寫下了這本終極版的哈伯專書,向哈伯望遠鏡服役30週年誌慶,並回顧它為天文知識帶來的眾多進展。書中包含五大重點:   ■以大尺寸高解析畫面呈現歷來最經典的哈伯天體照片   ■詳細解說這些拍攝成果在天文學上的意義   ■哈伯帶來的重大發現與後續研究   ■使哈伯的建造、維護與升級得以實現的工程技術   ■哈伯的下一步,以及繼哈伯之後的太空望遠鏡計畫

氧化數計算進入發燒排行的影片

盲貓創業 葡萄酒導賞團
葡萄酒
维基百科,自由的百科全书
跳到导航跳到搜索
葡萄酒是用新鲜葡萄果实或葡萄汁,经过发酵酿制而成的酒精饮料。在水果中,由於葡萄的葡萄糖及果糖含量较高,贮存一段时间就会发出酒味,因此常常以葡萄釀酒。葡萄酒是目前世界上产量最大、普及最广的单糖酿造酒。早在六千年以前,在盛产葡萄的地中海区域,两河流域的苏美尔人和尼罗河流域的古埃及人就会酿造葡萄酒。有趣的是,在舞蹈文化中,有一種葡萄酒舞是在釀酒用葡萄豐收時,慶祝的團體舞蹈。在古埃及文化中,葡萄酒(紅酒)和血相關聯,這種象徵關係也影響了附近地區產生的的宗教。在中國文化中,與葡萄酒有關的詩詞文學始自漢朝,多視葡萄酒為一種美酒[1]。

葡萄酒有許多分類方式。以成品顏色來說,可分為紅葡萄酒、白葡萄酒及粉紅葡萄酒三類。按照糖度划分可分为干型葡萄酒、半干葡萄酒、半甜葡萄酒及甜型葡萄酒。以釀造方式來說,可以分為平静葡萄酒、氣泡葡萄酒、加烈葡萄酒和加味葡萄酒四類。其中一般葡萄酒的酒精含量約為百分之八到十五,然而加烈葡萄酒的酒精含量可能會更高。

葡萄酒的酒性在很大程度上受到土壤、氣候以及釀酒技巧等因素的影響,但是酒的風味卻取決於釀酒葡萄的品種。根據目前的考古發現,葡萄酒的原料-葡萄,最早產於中國以及黑海與裡海之間的外高加索地區。外高加索葡萄亦在西汉时经张骞出使西域传到中国。目前葡萄已经被广泛引种到世界各地,主要是作为釀酒原料。但世界最有名的葡萄酒大多產自法国,法国葡萄酒的酿造历史可追溯到罗马帝国时期。由於法国气候温和,除了北部诺曼底一些區域以外,全國都能生产高品质的葡萄。在1996年時,全國共有超過818,000公頃的葡萄園,13個產酒區域,葡萄酒產量超過46億公升。至於其他歐洲國家,意大利與西班牙也是傳統的葡萄酒大國,以往多生產一般餐酒,但是從二十世紀七十年代起,開始有酒商走精緻路線,目前也有生產評價極高的葡萄酒。德國的白葡萄酒,產量雖然不多,但是幾百年的工藝傳承,也產出不少精緻的珍釀。歐洲國家生產的葡萄酒,通稱為舊世界葡萄酒,其他區域生產的葡萄酒,則稱為新世界葡萄酒,美國、澳洲、紐西蘭、智利、阿根廷、以及南非,是新世界葡萄酒的主要產區,但随着全球气候变暖的影响一些非传统葡萄酒生产国比如英国也开始尝试生产起泡葡萄酒。


目录
1 字源
2 葡萄品種
3 釀製
4 使用與品味
5 封裝與收藏
6 著名產地
6.1 法国
6.2 其他著名產地
7 葡萄酒的分類
7.1 法國
7.1.1 自然葡萄酒
7.1.2 一般慣行農法葡萄酒
7.2 葡萄牙
7.3 德國
7.4 西班牙與義大利
7.5 新世界
7.6 年份酒
7.7 無年份酒
7.8 紅葡萄酒產地與葡萄品種
7.9 汽泡葡萄酒
7.10 白葡萄酒產地與葡萄品種
7.11 加強葡萄酒
7.12 冰酒
7.13 貴腐酒
7.14 各国葡萄酒分级制度
8 葡萄酒的歷史
9 参见
10 参考文献
11 外部連結
字源
葡萄酒的英文「wine」源自於原始日耳曼語*winam,這個單字由拉丁語:vinum借用而來。它的歷史可以上追到原始印歐語字根*win-o-,它衍出生如赫梯語: wiyana;呂基亞語: oino;古希臘語:οἶνος oinos; 尼亞希臘語(Aeolic Greek): ϝοῖνος woinos, 亚美尼亚语: gini[2][3][4]。

「wine」可以被用來指其他的水果酒,但是通常需要冠上那種水果的名稱,如蘋果酒(cider )。在沒有冠上任何名稱時,它單單用於指葡萄酒。

葡萄品種

在藤蔓上的釀酒用葡萄
葡萄酒的風味取決於釀酒葡萄的品種。因為不同的葡萄,所釀製出來的香味、喝的方式、收藏的方式都不同,所以風味會有很大的差別。葡萄的品種千變萬化,而不同地區的地理位置、緯度、土質與氣候,都有適合栽培的葡萄品種。

儘管數個世紀以來,所傳承下來的嚴格法條都明確的規定著每個地區所可以種植的葡萄品種。但是,法國各地的葡萄農夫還是不斷的嘗試研發新品種的葡萄。1935年來法國政府制定了AOC法定認證。規定某些產地只許生產特定的葡萄品種。若此產地生產出非在法定規範內的品種,酒瓶上就看不到AOC法定認證的榮譽標籤了。此法用來確保法國葡萄酒,在有限的土地上達到產量及品質的最佳狀態。

釀製紅葡萄酒的葡萄品種主要有:赤霞珠(Cabernet Sauvignon,又称卡本内苏维翁)、品麗珠(Cabernet Franc)、梅洛葡萄(Merlot)、西拉葡萄(Shiraz,法國稱Syrah)、黑皮諾(Pinot Noir)、皮諾塔吉(Pinotage)、馬爾貝克(Malbec)、山吉歐維榭(Sangiovese)、田帕尼優(Tempranillo)、格那希(Grenache)、內比奧羅(Nebbiolo)、金芬黛(Zinfandel)、加美(Gamay)。

釀製白葡萄酒的葡萄品種主要有:莎當妮(Chardonnay)、雷司令(Riesling)、琼瑶浆(Gewurztraminer)、蜜思卡岱(Muscadet,別稱為勃根地香瓜)、白蘇維翁(Sauvignon Blanc)、榭密雍(Semillon)、麝香葡萄(Muscat)、維歐尼爾(Viognier)、灰皮諾(Pinot Gris)。

釀製

#採收葡萄 (拍攝地點:法國的 Côte de Beaune)
世界各地的红葡萄酒酿制程序大都是去梗、破碎,再将果汁、果肉、果核和果皮都装进发酵桶(或罐)中发酵,这些发酵桶会先被低剂量的二氧化硫处理以防止微生物感染[5]。葡萄汁液在发酵桶中发酵成酒精的同时,果皮和果肉经过在葡萄汁中的浸泡,在5-7日后便会释出葡萄酒的色素和劲度。

与白葡萄酒相比,红葡萄酒的酿造则要灵活的多。一些法国罗纳河谷的葡萄园,会将葡萄汁浸泡约3个星期,这样可以释放出大量的单宁酸。而另外一些葡萄酒庄同样的葡萄则只发酵7-9日,因为他们希望所产葡萄酒单宁酸更少。

白葡萄酒的酿造是直接将果实放入压榨机进行压榨,果汁澄清后入罐发酵。通常白葡萄酒发酵温度更低一些。

还有一种较快的酿酒方法叫二氧化碳浸软法,此法用未经挤破的葡萄进行发酵和浸软,发酵缸中上层的葡萄以自身的重量压破下层葡萄,让葡萄自然发酵,随之产生的二氧化碳便可将上层葡萄与空气分隔开来。这种葡萄酒有上好的颜色和果香,且单宁酸的含量极低。

使用與品味
更多信息:葡萄酒搭配

葡萄酒每年消費量,按人數計算:
低於1公升
在1至7公升間
在7至15公升間
在15至30公升間
大於30公升
葡萄酒在歐洲廣受歡迎,不論是作為飲料或是地中海式烹飪的佐料,在簡單的或是複雜的用途都被廣泛的使用著。在烹飪中,它的價值不只作為一种飲料,料理人更借重它的酸度,使得料理更加的富有風味。在葡萄酒的世界中十分講究,不同的餐點應搭配不同的葡萄酒類。紅葡萄酒、白葡萄酒和汽泡酒是最受歡迎的,並且也被稱為淡酒,因為他們只包含大約10-14%的酒精。(酒精百分比通常以體積計。)

葡萄酒搭配食物是一种以特定食物和特定葡萄酒共食以增加两者风味的艺术。在很多文化中,葡萄酒是每餐必备的固定饮食,长此以往,一个地区的酿酒和烹饪紧密结合到一起。葡萄酒搭配没有固定章法,一个地区酿的酒自然搭配这个地区的食物。现代所谓“葡萄酒搭配的艺术”,其基本思想是,酒和食物的特性(例如口感和味道)各有不同,有的特性可以和谐地结合起来,有的特性互相冲突。找出和谐的元素同时享用,可以让整个饮食体验更加愉快[6]。在昂贵的餐馆里,侍酒師会向客人推荐搭配食物的酒。

封裝與收藏
大多數的葡萄酒都是被裝在玻璃瓶及使用軟木塞封裝後出售的,但是傳統木塞產量不多且有老化的問題,封裝品質並非完美,近年來,使用金屬瓶蓋及合成性軟木塞的數量在逐漸上升中。但是传统木塞要更环保一些。

葡萄酒是一種自然又脆弱的飲料,容易被光、熱、震動及過大的濕度溫差中受到傷害。傳統上,酒窖提供葡萄酒一個無光和常溫的環境,除了保護其免於從不穩定的外界環境被傷害的可能,同時也提供了其良好的陳年場所。所以目前家庭用的恆溫酒櫃,其設定條件多半參考酒窖的環境,溫度約14℃±2℃,濕度保持65%±10%。不過這只是依照傳統智慧得到的存放條件,並沒有經過嚴謹的科學探究。

著名產地
法国
法國是一個在地理上得天獨厚的國家,三面臨海、一面接陸。因為其地理上所佔的優勢,造就了法國擁有了豐富的物產及各地不同的風土人情。

以葡萄酒而言,擁有不同的緯度、氣候及地形這些自然條件,再加人文上的歷史傳統、政府的管制規定。現今雖非為世界第一大的產酒國及出口國(為義大利),但因上述的自然及人文上的條件,法國葡萄酒仍為世界上擁有最多元、最豐富、最佳的葡萄酒產國,也是現在所有的新興產區模仿的對象。

法國全國共有超過818,000公頃的葡萄園,13個產酒區域,葡萄酒產量超過46億公升(1996年),以下為各產區及管制規定的一些基本介紹。

法國共有13個產區分別為:

波尔多
勃艮第
香檳區
阿尔萨斯
罗纳河谷地
盧瓦爾河谷地
朗格多克-鲁西永
西南產區
普羅旺斯
科西嘉島
#汝拉省
#薩伏依
#洛林
#小說 #廣東話
#有聲小說
#文字小說
#有聲文字小說
#視覺小說
#有聲書

遊戲類型:#恐怖 #搞笑 #實況 #生存 #多人 #美女 #美男 #卡牌 #娛樂 #開心 #行屍 #DEAD #遊戲王 #DUELLINKS #小三 #遊戲王 #生存 #戀愛 #推理 #現代 #惊悚 #恐怖 #冒險 #懸疑 #青年向 #女性向 #都市 #完結 #編推 #經典 #架空 #古風 #明星 #光影 #非遺 #對話故事 #民國 #諜戰 #大逃殺 #逆襲 #日系 #橙光

過往作品
#迷夢遊戲 #以罪之名 #猎鬼特工队


PAYPAL直播彈字贊助
https://streamlabs.com/hongkong6429hongkong6429

香港贊助 使用以下圖片到便利店說 i tunes pass 增值
https://scontent.fhkg1-1.fna.fbcdn.net/v/t1.0-9/19437309_456983178008419_6452537168900830196_n.jpg?oh=8c6fb5ee6a3b09fc1228ec16f2fa1eb9&oe=59EE2713


喵喵俠專頁
https://www.facebook.com/catcatcatman/
喵喵俠玩魔靈召喚群組
https://www.facebook.com/groups/664214333715607/
喵喵俠玩【遊戲王 DUEL LINKS】群組
https://www.facebook.com/groups/1396607467056722/

免費送你 #LIKECOIN #虛擬貨幣 #加密貨幣
https://like.co/register?from=hongkong6429


直播台 逢星期一 09:00PM 魔靈召喚
直播台 逢星期二 08:00PM
直播台 逢星期三 08:00PM
直播台 逢星期四 08:00PM
直播台 逢星期五

以上節目全由youtube直播
不停期請假,敬讀原諒

添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料

為了解決氧化數計算的問題,作者林冠吟 這樣論述:

目錄明志科技大學碩士學位論文口試委員審定書 i誌謝 ii摘要 iiiAbstract v目錄 viii圖目錄 xi表目錄 xvii第一章 緒論 11.1 前言 11.2 研究動機 2第二章 文獻回顧 42.1 鋰離子二次電池之發展 42.1.1鋰離子二次電池反應機制及熱失控 52.2 陰極材料(Cathode materials) 82.3 陽極材料(Anode) 102.4 隔離膜(Separator) 122.5 電解質(Electrolyte) 142.6 磷酸鋰鐵(LiFePO4)的基本特性 162.7 磷酸鋰鐵陰極材料改質方法 182.7.

1 碳層包覆 182.7.2 添加導電/包覆導電的碳材 212.7.3 縮小粒徑 242.8 磷酸鋰鐵材料之合成方法 262.8.1 微波法(Microwave method) 262.8.2 溶膠凝膠法(Sol-gel method) 282.8.3 水熱法(Hydrothermal method) 312.8.4 噴霧乾燥法(Spray-drying method) 35第三章 實驗方法 393.1 實驗藥品與儀器 393.1.1 實驗儀器與設備 403.2 LFP/C複合陰極材料之製備方法 413.2.1磷酸鋰鐵/碳(LFP/C)製備方法 413.2.2磷酸鋰鐵

/碳/多孔氧化石墨烯(LFP/C/PGO)製備方法 423.2.3磷酸鋰鐵/碳/氣相生長碳纖維(LFP/C/VGCF)製備方法 443.3 LFP/C之陰極複合材料之物性、化性分析 463.3.1磷酸鋰鐵/碳(LFP/C)陰極材料之物化性分析方法 473.3.2磷酸鋰鐵/碳(LFP/C)陰極材料之化學成份分析 563.4 磷酸鋰鐵/碳(LFP/C)陰極材料之電化學性質分析 573.4.1電極片製備 573.4.2鈕扣型鋰離子半電池封裝 593.4.3電池充/放電穩定度測試 603.4.4循環伏安法測試 613.4.5交流阻抗測試 623.4.6恆電流間歇滴定法測試 64

第四章 結果與討論 654.1 磷酸鋰鐵/碳(LFP/C)之材料晶相結構分析 654.1.1原位-晶相結構分析 674.2 磷酸鋰鐵/碳(LiFePO4/C)之表面形態分析 724.2.1 磷酸鋰鐵/碳(LFP/C)之材料化學組成元素分析 764.2.2 磷酸鋰鐵/碳(LFP/C)之顯微結構微分析 794.3 磷酸鋰鐵/碳(LFP/C)之碳層結構分析 844.3.1原位-顯微拉曼光譜分析 864.4 磷酸鋰鐵/碳(LFP/C)之比表面積分析(BET) 884.5磷酸鋰鐵/碳(LFP/C)之粉末電子導電度分析 914.6 磷酸鋰鐵/碳(LFP/C)之殘碳量分析 924.7

磷酸鋰鐵/碳(LFP/C)電化學分析法 934.7.1 磷酸鋰鐵/碳(LFP/C)之低電流速率之充放電分析 934.7.2 磷酸鋰鐵/碳(LFP/C)之高電流速率之充放電分析 994.7.3 磷酸鋰鐵/碳(LFP/C)之長期循換穩定性分析 1044.8 磷酸鋰鐵/碳(LFP /C)循環伏安分析 1184.8.1磷酸鋰鐵/碳(LFP/C)電化學微分曲線分析 1204.9 磷酸鋰鐵/碳(LFP/C)交流阻抗及鋰離子擴散係數分析 1244.9.1磷酸鋰鐵/碳(LFP/C)恆電流間歇滴定法測試 129第五章 結論 135參考文獻 137 圖目錄圖 1、鋰離子二次電池充放電原理示意圖

[12]。 5圖 2、1992年至2020年鋰離子電池的世界市場價值[15]。 6圖 3、鋰離子二次電池熱失控三個階段示意圖[19]。 7圖 4、陰極材料中主要分為三種不同的晶體結構[28]。 9圖 5、鋰離子電池之陽極材料分類圖。 10圖 6、鋰離子電池之陽極材料特性。 11圖 7、各種製造隔離膜的方法示意圖[39]。 12圖 8、磷酸鋰鐵(LiFePO4)與磷酸鐵(FePO4)晶格結構圖[53]。 17圖 9、LiFePO4和LiFePO4/C複合材料的SEM圖。 18圖 10、LiFePO4和LiFePO4/C複合材料的SEM圖。 19圖 11、未塗覆TWEEN 80

的LiFePO4 (a). SEM圖 (b). TEM和HRTEM圖;塗覆了TWEEN 80的LiFePO4 (c). TEM和 (d). HRTEM圖。 20圖 12、LFP–CNT–G組合的網絡結構示意圖[58]。 21圖 13、SEM圖 (a). 原始LFP (b). LFP-CNT複合材料 (c). LFP-G複合材料 (d). LFP-CNT-G複合材料;TEM圖 (e). 原始LFP (f). LFP–CNT複合材料 (g). LFP–G複合材料 (h). LFP–CNT–G複合材料。 22圖 14、(a) VC/LFP及C/LFP的放電曲線圖、(b) VC/LFP及C/LF

P循環比較圖。 22圖 15、VC/LFP和C/LFP的EIS阻抗曲線比較圖。 23圖 16、$VGCF的製造過程示意圖[60]。 23圖 17、LFP/C和LFP/C-Tween分析(a). XRD圖譜,(b). 粒徑分佈,(c).和(d). SEM圖,(e)和(f). TEM圖。 25圖 18、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10C不同電流速率下的充電/放電曲線。 27圖 19、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10 C的各種電流速率下的充電/放電循環性能圖。 27

圖 20、SEM圖(a). HY-LiFePO4 (b). HY-SO-LiFePO4。 29圖 21、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG樣品的SEM和TEM圖。 30圖 22、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG複合材料在不同速率下的充電/放電曲線和循環性能。 30圖 23、LiFePO4/C核-殼複合材料(a). XRD圖, (b). SEM圖, (c). TEM圖, (d). HRTEM圖。 32圖 24、SEM圖(a). 3DG, (b). FP, (c)、(d). FP/3DG, (e). LFP/C,

(f). LFP/3DG /C。 33圖 25、LFP/C和LFP/3DG/C,(a). 0.2C、(b). 1C時的循環性能曲線和庫侖效率。 34圖 26、LFPO/rGO複合材料(a)~(c). SEM圖像,(d)~(f). TEM圖像。 34圖 27、SEM圖(a). Hy-LFP/C (b). Hy-LFP/GO/C (c). SP-LFP/GO/C和(d). SP-LFP/PGO/C。 36圖 28、(a). Hy-LFP/C, (b). SP-LFP/GO/C, (c). SP-LFP/PGO/C複合材料在0.2~10C時的充放電曲線, (d). LFP複合材料的速率能力曲

線圖。 36圖 29、具有不同NC層含量的LiFePO4的SEM圖(a).0 wt. %NC (b).2 wt. %NC (c).5 wt. %NC (d).10 wt. %NC。 37圖 30、HRTEM圖(a).LFP/C, (b).LFP/C/CNT, (c).LFP/C/G, (d).LFP/C/G/CNT。 38圖 31、LiFePO4/C陰極材料之流程示意圖。 45圖 32、LiFePO4/C陰極複合材料的各性質檢測項目之流程圖。 46圖 33、布拉格表面衍射示意圖。 47圖 34、X-ray繞射分析儀(Bruker D2 Phaser)。 48圖 35、原位繞射分析

光譜儀組件。 49圖 36、掃描式電子顯微鏡(Hitachi S-2600H)圖。 50圖 37、高解析穿透式電子顯微鏡(JEOL JEM2100)。 51圖 38、顯微拉曼光譜儀(Confocal micro-Renishaw)。 52圖 39、原位顯為拉曼分析光譜儀組件。 53圖 40、比表面積分析儀。 54圖 41、將錠片夾入自製夾具之示意圖。 55圖 42、元素分析儀(Thermo Flash 2000)。 56圖 43、LiFePO4/C複合陰極材料電極片製備之流程圖。 58圖 44、CR2032鈕扣型半電池封裝示意圖。 59圖 45、佳優(BAT-750B)電池

測試儀。 60圖 46、恆電位電池測試儀(MetrohmAutolab PGST AT302N)圖。 61圖 47、AC交流阻抗測試圖譜(Nyquist plot)示意圖。 62圖 48、BioLogic BCS-805電池測試儀。 64圖 49、添加不同導電碳材之陰極複合材料XRD分析圖譜。 66圖 50、(a) LFP/C、(b) LFP/C/VGCF電極在充放電1次循環下的In-situ XRD分析圖。 69圖 51、LFP/C電極在不同範圍之In-situ XRD分析圖。 70圖 52、LFP/C/VGCF電極在不同範圍之In-situ XRD分析圖。 70圖 53、在

In-situ XRD充放電過程中LFP相的比例圖。 71圖 54、PGO之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 55、VGCF之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 56、LFP/C之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 57、LFP/C/PGO之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 58、LFP/C/VGCF之SEM表面形貌圖: (a)

.、(b). 在5kx、(c).、(d). 在10kx。 75圖 59、LFP/C樣品EDS元素mapping分析圖。 76圖 60、LFP/C樣品EDS元素分析光譜圖。 76圖 61、LFP/C/PGO樣品EDS元素mapping分析圖。 77圖 62、LFP/C/PGO樣品EDS元素分析光譜圖。 77圖 63、LFP/C/VGCF樣品EDS元素mapping分析圖。 78圖 64、LFP/C/VGCF樣品EDS元素分析光譜圖。 78圖 65、自製PGO添加劑在HR-TEM之分析圖。 80圖 66、市售VGCF添加劑在HR-TEM之分析圖。 80圖 67、LFP/C粉體在H

R-TEM之分析圖。 81圖 68、LFP/C/PGO粉體在HR-TEM之分析圖。 82圖 69、LFP/C/VGCF粉體在HR-TEM之分析圖。 83圖 70、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果圖。 85圖 71、LFP/C在不同範圍之In-situ micro-Raman分析圖。 87圖 72、LFP/C/VGCF在不同範圍之In-situ micro-Raman分析圖。 87圖 73、LFP/C材料之BET比表面積分析圖。 89圖 74、LFP/C/PGO材料之BET比表面積分析圖。 89圖 75、LFP/C/VGCF材料之BET比表面積分析圖。 9

0圖 76、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量曲線圖。 94圖 77、LFP/C在0.1C/0.1C充放電速率活化階段電性曲線圖。 95圖 78、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性曲線圖。 96圖 79、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段階段電性曲線圖。 97圖 80、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化曲線圖。 98圖 81、LFP/C在0.2C/0.2C-10C充放電速率電性曲線圖。 100圖 82、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性曲線圖

。 101圖 83、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性曲線圖。 102圖 84、添加不同導電碳材在0.2C/0.2-10C速率電性曲線圖。 103圖 85、LFP/C在0.1C/0.1C充放電速率30 cycles電性曲線圖。 106圖 86、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性曲線圖。 107圖 87、LFP/C/VGCF在0.1C/0.1C充放電速率30 cycles電性曲線圖。 108圖 88、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性曲線圖。 109圖 89、LFP/C在1

C/1C充放電速率100 cycles之電性曲線圖。 110圖 90、LFP/C/PGO在1C/1C充放電速率100 cycles之電性曲線圖。 111圖 91、LFP/C/VGCF在1C/1C充放電速率下100 cycles之電性曲線圖。 112圖 92、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性曲線圖。 113圖 93、LFP/C在1C/10C充放電速率下100 cycles之電性曲線圖。 114圖 94、LFP/C/PGO在1C/10C充放電速率下100 cycles之電性曲線圖。 115圖 95、LFP/C/VGCF在1C/10C充放電速率下

100 cycles之電性曲線圖。 116圖 96、添加不同導電碳材在1C/10C充放電速率100 cycles之電性曲線圖。 117圖 97、LFP/C添加不同導電碳材之CV分析圖。 119圖 98、LFP/C樣品之電化學微分曲線分析。 121圖 99、LFP/C/VGCF樣品之電化學微分曲線分析。 122圖 100、LFP/C樣品添加不同導電碳材之電化學微分曲線分析。 123圖 101、等效電路圖模組圖[112]。 125圖 102、在0.1C/0.1C充放5次循環後,不同導電碳材製備LFP/C樣品:(a). EIS阻抗比較圖、(b).鋰離子擴散係數比較圖。 126圖 10

3、在0.1C/0.1C充放30次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 127圖 104、在1C/1C充放100次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 128圖 105、LFP/C單次步驟充放電曲線圖(a) charge;(b) discharge。 132圖 106、LFP/C之V vs.τ1/2分析圖。 132圖 107、LFP/C之GITT充放電曲線圖。 133圖 108、LFP/C/VGCF之GITT充放電曲線圖。 133圖 109、GITT單次步驟比

較(a) charge、(b) discharge。 134圖 110、GITT之充電分析圖。 134 表目錄表 1、鋰離子電池之陰極材料的特性比較分析表 9表 2、鋰離子電池常用有機溶劑之特性比較 15表 3、LiFePO4與FePO4之晶格參數 17表 4、實驗藥品 39表 5、實驗儀器與設備 40表 6、充放電條件計算表 60表 7、方程式中符號及單位 63表 8、添加不同導電碳材之陰極複合材料XRD晶相比較表 66表 9、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果 85表 10、LFP/C、LFP/C/PGO、LFP/C/VGCF之比表面積分析結果

88表 11、LFP/C、LFP/C/PGO、LFP/C/VGCF之粉體電子導電度結果分析 91表 12、添加不同導電碳材之陰極複合材料之殘碳含量分析 92表 13、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量比較 94表 14、LFP/C在0.1C/0.1C充放電速率活化階段電性比較 95表 15、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性比較 96表 16、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段電性比較 97表 17、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化比較 98表 18、LFP/C在

0.2C/0.2C-10C充放電速率電性比較 100表 19、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性比較 101表 20、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性比較 102表 21、添加不同導電碳材在0.2C/0.2-10C速率電性比較表 103表 22、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性比較表 107表 23、LFP/C/VGCF在0.1C/0.1C充放電速率下30 cycles電性比較表 108表 24、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性比較表 10

9表 25、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性比較表 113表 26、添加不同導電碳材在1C/10C充放電速率100 cycles之電性比較表 117表 27、LFP/C添加不同導電碳材之CV分析結果 119表 28、LFP/C樣品之電化學微分曲線分析表 121表 29、LFP/C/VGCF樣品之電化學微分曲線分析表 122表 30、LFP/C樣品添加不同導電碳材之電化學微分曲線分析 123表 31、在0.1C/0.1C充放5次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 126表 32、在0.1C/0.

1C充放30次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 127表 33、在1C/1C充放100次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 128表 34、鋰離子的擴散係數方程式中符號及單位 130

脫硫工程技術與設備(第三版)

為了解決氧化數計算的問題,作者郭東明 這樣論述:

《脫硫工程技術與設備》自出版以來,已經成為相關技術人員的必讀參考書。本書詳細介紹了各種煙氣脫硫工藝技術、脫硫塔核心設計技術、脫硫系統主要設備特點以及脫硫系統的調試與運行技術,同時總結了大量的脫硫實踐經驗和教訓,目的是通過這些技術的介紹,使讀者能夠改進及提高已有脫硫技術的設計、運營水準,開發出新的脫硫技術,同時提高相關設備的製造水準。本書可供相關學校、科研院所、電力、化工、冶金及建材等行業的工程技術人員、管理人員參考,亦可作為高等院校師生的參考書。 郭東明 航太空氣動力研究院環保事業部,總工程師、教授級高工,從1996年至今,一直從事脫硫脫硝和微細粉塵防治方面的技術研究和工

程應用方面技術和管理工作。 1999年,獲脫硫技術專利一項,是我國的國產化脫硫技術,目前已應用于5萬至60萬機組共6台機組的脫硫工程。 2001年,在化工出版社出版《硫氮污染防治工程技術及其應用》一書,2008年在我社出版《脫硫工程技術與設備》,深受讀者好評。 2002至2003年,在德國進行脫硫方面的交流學習。 到目前為止,負責完成5萬~30萬機組脫硫項目4個,參與完成2個。 國家脫硫脫硝專家庫成員,已參與3個脫硫工程的評標。 第一章 當前脫硫技術存在的問題與展望1 一、當前脫硫技術存在的一些問題1 二、對脫硫技術的展望3 第二章 石灰石-石膏法脫硫技術6 第

一節 石灰石的特性6 一、石灰石的物化性質6 二、石灰石的反應活性10 三、石灰石和白雲石有關性質比較16 第二節 石灰石脫硫基本原理17 第三節 石膏的結晶21 一、石膏和半水亞硫酸鈣晶體的特點21 二、硫酸鈣的結晶過程23 三、結晶過程的影響因素26 四、石膏品質控制措施30 第四節 亞硫酸的氧化30 一、影響亞硫酸鹽氧化的因素32 二、抑制氧化36 三、煙氣脫硫系統中常用的曝氣裝置37 第五節 影響脫硫性能的幾個關鍵參數41 一、傳質單元數與脫硫效率的關係42 二、煙氣中SO2濃度的影響46 三、迴圈漿液固含物質量分數及停留時間的影響46 四、液氣比、煙氣流速對脫硫塔壓降的影響47 五、

pH值的影響47 六、煤質的影響49 七、CaCO3品位的影響49 八、氟離子的影響49 九、石灰石利用率的影響49 十、氧化方式的影響50 十一、煙氣中粉塵的影響51 十二、煙氣溫度的影響51 十三、有機酸的影響52 十四、供漿位置的影響52 十五、鎂鹽的影響53 十六、鍋爐負荷對脫硫塔的影響53 十七、煙氣與脫硫劑接觸時間54 十八、SO2-3、Al3 、F-濃度的影響54 十九、銨鹽的影響55 第六節 脫硫添加劑56 一、化學添加劑應用機理56 二、化學添加劑在FGD系統中的應用57 三、化學添加劑製備系統62 四、應用化學添加劑的優缺點62 五、添加劑的選擇64 第七節 結垢問題66

一、脫硫系統中常出現的結垢及固體堆積現象66 二、結垢的危害68 三、結垢類型68 四、堵塞、結垢的原因69 五、結垢的防止措施70 第八節 脫硫系統可靠性72 一、脫硫系統可靠性一般定義72 二、影響可靠性的因素73 三、提高系統可靠性的措施75 第九節 脫硫系統分析監測76 一、主要監測項目76 二、實驗室建設77 三、幾個關鍵參數的化學分析原則79 四、分析計畫範例82 五、生石灰消化速度測試83 第十節 脫硫廢渣的綜合利用86 一、脫硫石膏的基本性質86 二、脫硫石膏與天然石膏比較87 三、石膏的烘乾工藝介紹87 四、炒鍋生產熟石膏工藝88 第十一節 石灰脫硫技術91 一、生石灰的性質

91 二、石灰石與石灰比較94 三、鎂增強石灰和石灰石工藝比較97 第三章 其它工藝100 第一節 氨-硫酸銨法脫硫工藝100 一、脫硫工藝流程100 二、氨法脫硫中的問題及其解決方法109 三、CGP(Clean and Green Process)工藝簡介110 第二節 MgO-MgSO3脫硫工藝(抑制氧化法)111 一、工藝流程111 二、抑制氧化方法113 三、結晶產物控制114 第三節 可再生脫硫工藝115 一、溶劑及其特性115 二、CANSOLV可再生胺脫硫工藝118 第四節 活性炭同時脫硫脫硝除塵技術120 一、脫硫、脫硝、解吸工藝和原理120 二、主要設備125 三、活性炭

的選擇132 第五節 海水脫硫133 一、海水脫硫過程的基本原理133 二、設計中需要注意的幾個主要問題134 第六節 迴圈流化床(CFB)脫硫技術140 一、主要工藝原理及其影響因素141 二、主要系統簡介143 三、布袋除塵器145 四、物料循環系統145 五、流化風系統145 六、主要控制回路146 七、脫硫廢渣的利用146 第七節 噴霧乾燥吸收(SDA)煙氣脫硫技術147 一、吸收劑製備系統150 二、吸收和乾燥系統151 三、固體廢渣捕集系統152 四、固體廢渣處置系統153 第八節 其它半幹法脫硫技術153 一、NID脫硫工藝153 二、增濕活化脫硫技術155 三、霍夫曼脫硫脫硝技

術157 四、吸收劑供應系統防止板結、下灰不暢的措施158 第九節 碳酸氫鈉乾粉噴射(SDS)工藝158 一、碳酸氫鈉乾粉噴射158 二、碳酸氫鈉的物化性質159 三、脫硫反應機理160 四、噴射位置的選擇162 五、幹式噴射系統主要設備162 六、幹式噴射系統設計要點164 第四章 脫硫系統主要設備介紹165 第一節 煙氣再熱裝置165 一、回轉式再熱器165 二、熱管式換熱器168 三、經驗與教訓171 第二節 脫硫漿液迴圈泵172 一、輸送的介質特性172 二、迴圈泵特點173 三、材質174 四、提高迴圈泵使用壽命的方法176 五、迴圈泵選擇概要177 六、迴圈泵管路設計與運行177

第三節 增壓風機178 一、風機類型178 二、動、靜葉可調軸流風機的有關性能比較180 三、增壓風機的佈置181 四、設計和選擇風機時需要考慮的問題183 第四節 煙道184 一、煙道的分類184 二、煙道的設計和安裝應注意的問題185 三、煙氣道上的主要儀錶189 第五節 煙道擋板189 一、煙道擋板型式190 二、密封空氣系統192 三、啟閉時間要求192 四、材質193 五、擋板門的設計、安裝和運行應注意的問題193 第六節 水力旋流器194 一、水力旋流器的運行方式195 二、性能初步判定195 三、設備選型原則196 第七節 過濾設備198 一、離心式脫水機199 二、板框壓濾機

199 三、真空過濾機200 四、影響過濾性能的因素203 五、過濾設備的選擇204 第八節 膨脹節205 一、脫硫系統對膨脹節的一般要求205 二、膨脹節的種類206 三、膨脹節結構206 四、防失效設計208 五、膨脹節安裝運輸注意事項208 第九節 閥門209 一、常用閥門介紹209 二、閥門材料210 三、脫硫系統閥門選擇概要211 四、閥門佈置要點213 第十節 石膏倉213 第十一節 FRP漿液管道與濾網215 一、FRP漿液管道215 二、泵前濾網216 第五章 脫硫系統設計217 第一節 脫硫系統概述217 第二節 設計總體規劃和設計程式219 第三節 物料和熱量衡算224

一、脫硫塔內組分224 二、物料衡算225 三、熱量衡算225 四、脫硫效率計算226 第四節 脫硫系統的平、斷面佈置227 一、平面佈置227 二、斷面佈置228 三、設備佈置要點228 第五節 煙氣系統的設計230 一、增壓風機231 二、增壓風機的性能參數計算232 三、煙氣換熱器232 四、煙道擋板233 五、煙道233 第六節 吸收劑製備系統235 一、濕磨系統236 二、幹磨系統237 三、幹、濕式制漿方案比較241 四、工藝設備佈置原則242 五、主要設備243 第七節 石膏脫水系統247 第八節 控制系統248 一、DCS設計的一般要求248 二、控制系統的可靠性250 三、主

要控制參數和控制回路252 四、FGD系統的聯鎖保護258 五、FGD保護性停運259 六、控制規律的選擇259 第九節 濕法煙氣脫硫系統測量儀錶的選用261 一、脫硫系統主要監測參數261 二、常用的儀錶261 第十節 電氣系統268 一、供電系統一般要求268 二、直流系統一般要求269 三、交流保安電源一般要求269 四、交流不斷電電源UPS一般要求269 五、控制、保護與介面一般要求270 六、設計中需注意的問題271 第十一節 工藝水系統271 第十二節 壓縮空氣系統272 第十三節 其它附屬系統273 一、事故儲罐和地坑系統273 二、石膏倉和卸料系統274 三、鋼結構、樓梯、平臺

274 四、保溫、油漆與隔音275 第十四節 消防報警系統275 第十五節 脫硫廢水處理技術276 一、FGD系統需要排放廢水的原因276 二、廢水排放量的確定277 三、濕法脫硫廢水特徵277 四、FGD廢水處理系統279 五、廢水煙道蒸發系統(WES)286 六、廢水濃縮固化系統(WCS)289 七、廢水蒸發結晶系統289 第十六節 管道設計291 一、管路設計的基本原則292 二、塔內漿液管道293 三、材質選擇297 四、管道附件298 第十七節 綜合管架設計298 第十八節 土建設計中應注意的問題300 一、迴圈泵房土建設計中應注意的問題300 二、石膏庫及脫水車間土建設計中應注意的

問題301 三、控制室土建設計應注意的問題302 四、設備基礎單位工程土建設計應注意的問題302 五、場地溝道及零星土建設計應注意的問題303 第十九節 脫硫系統對發電機組的影響304 一、對鍋爐的影響304 二、對尾部煙道的影響305 三、對煙囪安全的影響305 四、對工業水系統、廠用電系統的影響306 五、脫硫石膏與沖灰水混排的影響307 第二十節 運用FGDPRISM模型進行FGD系統設計、評估、優化307 第二十一節 脫硫系統優化與節能設計310 一、工藝設計的優化310 二、脫硫塔設計優化312 三、控制系統設計優化313 四、運行優化313 五、原煙氣增設煙氣冷卻器313 第二十二

節 脫硫塔協同除塵技術315 一、預洗滌冷卻316 二、改變吸收劑316 三、脫硫塔入口優化316 四、噴淋層優化317 五、提高脫硫塔局部氣速318 六、增效環319 七、增混元件320 八、冷凝325 九、改善吸收介質325 第二十三節 濕法脫硫煙氣中可溶性鹽消除措施326 一、可溶性鹽產生的原因326 二、減少可溶性鹽排放的措施327 第六章 脫硫塔設計330 第一節 脫硫塔結構設計330 一、脫硫塔結構定性設計331 二、脫硫塔的優化設計336 第二節 脫硫塔內的氣動特性337 一、煙氣入口區域337 二、託盤區域338 三、噴淋區域338 四、測試技術340 五、放大準則341 第

三節 大型洗滌塔的CFD模擬344 第四節 脫硫塔力學分析348 一、脫硫塔的力學計算349 二、脫硫塔局部加強設計350 三、應力分析示例351 第五節 統計方法在回歸模型建立中的應用361 第六節 典型脫硫塔介紹364 一、噴淋塔365 二、ALRD脫硫塔365 三、託盤塔366 四、文丘裡塔367 五、雙迴圈塔368 六、德國LEE脈衝懸浮/池分離脫硫塔369 七、動力波脫硫塔369 八、鼓泡塔370 九、S-H-U脫硫塔377 第七節 BEKA塑膠和瓷磚襯裡混凝土脫硫塔385 一、BEKA塑膠襯裡混凝土脫硫塔385 二、瓷磚襯裡混凝土脫硫塔388 第八節 除霧器389 一、濕式脫硫塔中

霧滴的產生389 二、除霧原理390 三、氣流中液滴在離心力場中的運動390 四、常用除霧器基本結構394 五、幾種除霧器性能比較399 六、除霧器在脫硫塔中的佈置404 七、除霧器沖洗系統的設計405 八、除霧器的監測408 九、其它形式的除霧器408 十、除霧器液滴測量技術412 第九節 噴嘴421 一、脫硫漿液噴嘴類型422 二、影響噴嘴性能的因素423 三、噴嘴的材料424 四、噴嘴與管道的連接方式426 五、操作與維護427 六、噴嘴在塔內佈置428 七、噴嘴的選擇428 八、噴淋層霧化噴嘴工作參數要求實例429 九、噴淋層噴嘴技術要求429 第十節 脫硫塔內漿液的懸浮與氧化429

一、側入式攪拌裝置430 二、脈衝懸浮裝置432 第十一節 脫硫塔結構設計基本技術要求433 一、對板材的誤差要求433 二、製作安裝要求433 三、脫硫塔安裝尺寸誤差435 四、焊接與檢驗435 五、油漆436 六、沉降觀測試驗436 第七章 濕煙氣排放技術437 第一節 濕煙氣排放技術437 一、正確認識GGH的作用437 二、安裝GGH帶來的問題438 三、不安裝GGH帶來的問題439 第二節 常規濕煙囪排放設計442 一、採用高效除霧器並保證除霧器正常運行442 二、改進脫硫塔下游煙道的結構,選擇合適的材料443 三、濕煙囪設計443 四、濕煙囪應用實例448 第三節 煙塔合一排放技

術449 一、煙塔合一排放技術的優點449 二、煙塔合一排放技術應用產生的影響450 三、有關煙塔合一排放技術設計和改造的幾個問題453 第四節 無腐煙囪濕煙氣排放技術457 一、無腐收塵節能煙囪的運行原理457 二、無腐收塵節能煙囪的技術特點458 第五節 塔頂煙囪直排技術459 一、塔頂煙囪設計要點459 二、脫硫塔基礎設計要點459 三、脫硫塔設計要點459 第八章 煙氣脫硫系統的調試與管理461 第一節 FGD系統調試範圍與特點461 一、調試範圍461 二、FGD系統調試特點462 第二節 FGD系統分部調試463 一、FGD系統分部調試應具備的條件463 二、FGD系統單體調試4

65 三、FGD系統分系統調試467 四、調試舉例467 第三節 熱態調試和168考核469 一、熱態調試469 二、168考核473 三、系統消缺475 四、事故預案476 五、調試控制要點和經驗477 第四節 FGD系統調試運行中常見問題及其處理481 第九章 脫硫系統運行與維護488 第一節 FGD系統運行與維護概述488 一、FGD裝置操作工況分類488 二、FGD系統總的啟停方式489 第二節 典型石灰石-石膏法脫硫系統運行實例491 一、煙風系統的啟動、停止、檢查、聯鎖及正常運行491 二、石灰石破碎系統的啟動、停止、檢查、聯鎖及正常運行496 三、石灰石漿液製備系統啟動、停止、

檢查、聯鎖及正常運行497 四、脫硫塔系統的啟動、停止、檢查、聯鎖及正常運行499 五、事故儲罐和地坑系統的啟動、停止、檢查、聯鎖及正常運行501 六、石膏脫水系統的啟動、停止、檢查、聯鎖及正常運行501 七、轉動設備501 八、電氣系統的正常運行502 第三節 FGD運行控制與管理503 一、正常運行中運行人員應該控制的FGD系統的主要參數503 二、做好FGD運行控制與管理的幾點體會504 第四節 脫硫系統事故的現象、原因及處理505 一、脫硫系統事故處理總則505 二、緊急停運脫硫裝置情況506 三、發生火災時的處理507 四、6kV電源中斷的現象、原因及處理507 五、380V電源中斷

的現象、原因及處理507 六、工藝水中斷的現象、原因及處理508 七、脫硫增壓風機故障、現象、原因及處理508 八、脫硫塔迴圈泵全停509 九、煙氣系統的故障509 十、石膏脫水系統故障510 十一、石灰石制漿系統的故障511 十二、公用系統儀用空壓機故障511 十三、儀錶故障512 第十章 脫硫工程防腐問題513 第一節 常用防腐材料防腐失效與防護513 一、玻璃鋼(FRP)514 二、橡膠516 三、玻璃鱗片516 四、鎳基合金517 五、塑膠521 第二節 防腐材料的經濟比較與選擇521 一、防腐材料的經濟比較521 二、影響防腐材料選擇的因素524 第三節 脫硫系統防腐方案示例525

一、防腐區域介質特性分析525 二、防腐方案示例525 第十一章 主要施工方案528 第一節 脫硫塔及其基礎施工方案528 一、脫硫塔基礎施工方案要點528 二、脫硫塔施工方案要點529 三、煙道系統安裝要點532 四、管道、閥門安裝方案要點533 五、C-276材料的焊接533 第二節 脫硫工程防腐施工品質控制要點534 一、橡膠內襯品質控制要點534 二、鱗片塗層品質控制要點536 三、煙氣脫硫系統運行後的檢查537 第十二章 脫硫技術在典型行業中的應用538 第一節 垃圾焚燒脫硫技術538 一、幾種工藝流程介紹538 二、工程實例540 第二節 電解鋁煙氣脫硫技術550 一、工程概

況550 二、脫硫系統簡介552 第三節 焦爐煙氣脫硫脫硝技術561 一、焦爐入口煙氣設計參數及排放指標564 二、工藝特點565 第四節 煙氣痕量元素吸附技術567 一、煙氣設計參數及指標567 二、活性炭噴射系統介紹568 三、主要設備一覽表571 第五節 燒結機/球團脫硫技術572 一、工程概況573 二、系統介紹574 三、主要設備性能參數577 四、主要設備規格一覽表578 第六節 水泥窯尾煙氣脫硫脫硝技術580 第七節 炭素煆燒和焙燒煙氣脫硫技術585 一、我國炭素廠採用的煙氣淨化方法585 二、石灰/石灰石-石膏法在焙燒煙氣脫硫中的應用586 第十三章 煙氣脫硫工程投標書的技術

與經濟評估591 第一節 技術評估591 第二節 經濟評估597 參考文獻605

半導體封裝產品環境衝擊與碳足跡評估-以某半導體公司為例

為了解決氧化數計算的問題,作者張晁綸 這樣論述:

隨著科技日新月異,對半導體晶片的需求量也日漸提升。近年伴隨著新冠疫情等因素,使全球的半導體供應鏈面臨嚴重的供需失衡,近一步提升台灣半導體產業的國際地位。半導體晶片透過封裝技術確保晶片不受外在因素之影響而正常運作。然而;在半導體製程階段會消耗大量的能資源及用水,造成嚴重的環境影響,因此,本研究鑑於半導體封裝產業在台灣半導體產業鏈的重要性,選定台灣某半導體封裝公司作為研究對象,並以每生產1 mm3的封裝產品(Flip Chip & Lead Frame)作為功能單位,採用生命週期評估方法探討從原物料、運送、製程能資源投入和製程廢棄物處置等各階段相關的環境衝擊及碳足跡,並參考國內外擬定的碳管理策略

進行情境假設,以比較各封裝產品未來的碳排放趨勢。由分析結果得知,每生產1 mm3的Flip Chip 金線產品和Lead Frame金線產品之熱點皆是原料階段所使用的金線線材,其佔比分別約為92.9%和76.3%;Flip Chip銅線產品的熱點為製程階段的電力投入,佔比約為48.8%;Lead Frame銅線產品的熱點為原料階段的Lead Frame投入,佔比為50.7%。Flip Chip 金線及銅線產品、Lead Frame金線及銅線產品的碳足跡熱點皆為製程階段的電力投入,其分別約佔44.3%、68.0%、48.4%和58.0%。情境假設的結果得知,無論是以國內或國外之策略作為參考,隨著

再生能源比例的提升,電力生產時之碳足跡係數皆有明顯的降低趨勢,從2020年至2050年的下降幅度分別約為92%和87%。隨著企業採用之綠電比例逐年提升且結合電力碳足跡的變化趨勢,Flip Chip金線及銅線產品、Lead Frame金線及銅線產品的碳足跡也分別降低約43.3%、66.4%、46.0%和56.7%。綜合本研究之評估結果,鑑別出每生產一功能單位封裝產品之熱點,並結合情境模擬的方式提供案例公司改善建議。後續研究建議可以對不同綠電形式進行情境模擬,並結合經濟因素,探討案例公司達成減排目標所需耗費的成本,藉以作為其未來實務執行之參考依據。